Introduction

Concrete is one of the most versatile and widely used materials in the construction industry. It can be custom-mixed for compressive strength or color application, placed in almost any shape or form, and finished to resemble masonry, stone, and other surfaces. Concrete is durable and virtually maintenance-free. It is also fairly easy to work with and installs relatively quickly.

Concrete estimating is generally divided into five basic areas:

- Concrete materials and placement
- Formwork
- Reinforcing
- Finishing
- Precast concrete

Concrete quantities are usually taken off in measures of cubic yards, as this is how supply companies charge for it. Formwork is taken off in square feet (generally in square feet of area in contact with the concrete as opposed to the actual area of the forms used). Reinforcing is normally taken off in tons of steel. Finishing is taken off in square feet of finished surface. Precast concrete quantities are taken off in either square feet or by the piece, depending on usage and the type of unit being considered.

Although concrete requires a large amount of energy to produce, there have been recent strides by manufacturers to reduce the environmental impacts of processing and using it. By adding blast furnace slag or coal fly ash (industrial waste products), the cement content of concrete is reduced along with the pollution and greenhouse gasses associated with its production. Using recycled aggregate reduces the amount of material needing to be transported to landfills. Concrete can also be formulated to be very porous; in this form it is useful in reducing pollution due to storm water runoff by allowing the water to seep into the ground where it can be absorbed naturally.

Traditional concrete does not have a high insulating value, but it does have a high mass. This can be used to its advantage. In passive solar spaces, concrete floors can soak up heat during hot summer days and release it during the cooler evenings. When additional insulation value is required for underground structures, permanent insulating formwork works well and saves the additional step of adding insulation after the concrete is cured.

Another green approach is finishing the concrete surface to a higher level of quality, possibly adding color or texture in lieu of adding carpeting or tile and their associated costs, both monetary and environmental.

<u>Checklist √</u>

For an estimate to be reliable, all items must be accounted for. A complete estimate can also limit contingencies. The following checklist can be used to help ensure that all items are included.

Access Flooring	Quarry tileRaised access
□ Bases	□ Resilient
Cove	□ Asphalt
\Box Sanitary	Conductive
	Cork
Ceilings	□ Linoleum
□ Acoustical	□ Polyurethane
Dropped	□ Rubber tile
Drywall	□ Sheet vinyl
□ Insulation	□ Vinyl tile
□ Thermal	□ Stone
Acoustic	Terrazzo
□ Plaster	□ Wood
□ Suspension system	🗆 Wall Finishes
Drywall	□ Ceramic tile
	Planking
Flooring	□ Plastic tile
□ Brick	□ Mosaic tile
□ Carpet	□ Quarry tile
Carpet tile	□ Metal tile
Ceramic tile	□ Paint
Composition	□ Paneling
Concrete topping	□ Plaster
Metal tile	□ Stucco
Paint Paint	□ Wainscoting
Epoxy	□ Wall coverings
Urethane Urethane	Cloth
☐ Mosaic tile	Paper
□ Plastic tile	□ Vinyl

321 =

Pipe Diameter	Max. S.F. Roof Area*	Gal./Min.
2″	544	23
3″	1,610	67
4″	3,460	144
5″	6,280	261
6″	10,200	424
8″	22,000	913

Figure 22-18 Roof Drain Sizing Chart

*Design Assumptions: Vertical conductor size is based on a maximum rate of rainfall to 4" per hour. To convert roof area to other rates multiply "Max. S.F. Roof Area" shown by four and divide the result by desired local rate. The answer is the local roof area that may be handled by the indicated pipe diameter.

The above chart is meant to be used as a guide. Local building codes and requirements may vary from the values indicated and should be used when available.

Description	Labor- Hours	Unit]
Rotary Syphons6" Diameter185 CFM8" Diameter215 CFM10" Diameter260 CFM12" Diameter310 CFM14" Diameter500 CFM16" Diameter635 CFM18" Diameter835 CFM20" Diameter1080 CFM24" Diameter1530 CFM30" Diameter2500 CFM36" Diameter3800 CFM42" Diameter4500 CFM	1.000 1.143 1.333 1.600 1.600 1.778 1.778 1.778 2.000 2.000 2.286 2.667 4.000	Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea.	
Spinner Ventilators 4" Diameter 180 CFM 5" Diameter 210 CFM 6" Diameter 250 CFM 8" Diameter 360 CFM 10" Diameter 540 CFM 12" Diameter 770 CFM	.800 .889 1.000 1.143 1.333 1.600	Ea. Ea. Ea. Ea. Ea. Ea. Ea.	Rotary Syphon
14" Diameter 830 CFM 16" Diameter 1200 CFM 18" Diameter 1700 CFM 20" Diameter 2100 CFM 24" Diameter 3100 CFM 30" Diameter 4500 CFM 36" Diameter 5500 CFM	1.600 1.778 1.778 2.000 2.000 2.286 2.667	Ea. Ea. Ea. Ea. Ea. Ea.	
Stationary Gravity Syphons 3" Diameter 40 CFM 4" Diameter 50 CFM 5" Diameter 58 CFM 6" Diameter 66 CFM	.667 .800 .889 1.000	Ea. Ea. Ea. Ea.	Spinner Ventilator
7" Diameter 86 CFM 8" Diameter 110 CFM 10" Diameter 140 CFM 12" Diameter 160 CFM 14" Diameter 250 CFM 16" Diameter 380 CFM 18" Diameter 500 CFM 20" Diameter 625 CFM 24" Diameter 900 CFM 30" Diameter 1375 CFM	1.067 1.143 1.333 1.600 1.600 1.778 1.778 2.000 2.000 2.286	Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea.	
36" Diameter 2000 CFM 42" Diameter 3000 CFM	2.286 2.667 4.000	Ea. Ea. Ea.	Stationary Gravity Syphon

Figure 23-27 Installation Time in Labor-Hours for Roof Ventilators